Arachidonic Acid–Induced Dilation in Human Coronary Arterioles: Convergence of Signaling Mechanisms on Endothelial TRPV4‐Mediated Ca2+ Entry
نویسندگان
چکیده
BACKGROUND Arachidonic acid (AA) and/or its enzymatic metabolites are important lipid mediators contributing to endothelium-derived hyperpolarizing factor (EDHF)-mediated dilation in multiple vascular beds, including human coronary arterioles (HCAs). However, the mechanisms of action of these lipid mediators in endothelial cells (ECs) remain incompletely defined. In this study, we investigated the role of the transient receptor potential vanilloid 4 (TRPV4) channel in AA-induced endothelial Ca(2+) response and dilation of HCAs. METHODS AND RESULTS AA induced concentration-dependent dilation in isolated HCAs. The dilation was largely abolished by the TRPV4 antagonist RN-1734 and by inhibition of endothelial Ca(2+)-activated K(+) channels. In native and TRPV4-overexpressing human coronary artery ECs (HCAECs), AA increased intracellular Ca(2+) concentration ([Ca(2+)]i), which was mediated by TRPV4-dependent Ca(2+) entry. The AA-induced [Ca(2+)]i increase was inhibited by cytochrome P450 (CYP) inhibitors. Surprisingly, the CYP metabolites of AA, epoxyeicosatrienoic acids (EETs), were much less potent activators of TRPV4, and CYP inhibitors did not affect EET production in HCAECs. Apart from its effect on [Ca(2+)]i, AA induced endothelial hyperpolarization, and this effect was required for Ca(2+) entry through TRPV4. AA-induced and TRPV4-mediated Ca(2+) entry was also inhibited by the protein kinase A inhibitor PKI. TRPV4 exhibited a basal level of phosphorylation, which was inhibited by PKI. Patch-clamp studies indicated that AA activated TRPV4 single-channel currents in cell-attached and inside-out patches of HCAECs. CONCLUSIONS AA dilates HCAs through a novel mechanism involving endothelial TRPV4 channel-dependent Ca(2+) entry that requires endothelial hyperpolarization, PKA-mediated basal phosphorylation of TRPV4, and direct activation of TRPV4 channels by AA.
منابع مشابه
Arachidonic Acid–Induced Dilation in Human Coronary Arterioles: Convergence of Signaling Mechanisms on Endothelial TRPV4-Mediated Ca Entry
TRPV4 antagonist RN-1734 and by inhibition of endothelial Ca-activated K channels. In native and TRPV4-overexpressing human coronary artery ECs (HCAECs), AA increased intracellular Ca concentration ([Ca]i), which was mediated by TRPV4-dependent Ca entry. The AA-induced [Ca]i increase was inhibited by cytochrome P450 (CYP) inhibitors. Surprisingly, the CYP metabolites of AA, epoxyeicosatrienoic ...
متن کاملActivation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca entry and mitochondrial ROS signaling
Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, Zhang DX. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol 302: H634–H642, 2012. First published December 2, 2011; doi:10.1152/ajpheart.00717.2011.—In human coronary arterioles (HCAs) from patient...
متن کاملActivation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling.
In human coronary arterioles (HCAs) from patients with coronary artery disease, flow-induced dilation is mediated by a unique mechanism involving the release of H(2)O(2) from the mitochondria of endothelial cells (ECs). How flow activates ECs to elicit the mitochondrial release of H(2)O(2) remains unclear. Here, we examined the role of the transient receptor potential vanilloid type 4 (TRPV4) c...
متن کاملTRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels.
Vasodilatory factors produced by the endothelium are critical for the maintenance of normal blood pressure and flow. We hypothesized that endothelial signals are transduced to underlying vascular smooth muscle by vanilloid transient receptor potential (TRPV) channels. TRPV4 message was detected in RNA from cerebral artery smooth muscle cells. In patch-clamp experiments using freshly isolated ce...
متن کاملTRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress.
The transient receptor potential vallinoid type 4 (TRPV4) channel has been implicated in the endothelial shear response and flow-mediated dilation, although the precise functions of this channel remain poorly understood. In the present study, we investigated the role of TRPV4 in shear stress-induced endothelial Ca(2+) entry and the potential link between this signaling response and relaxation o...
متن کامل